SECTION VI

VEGETATION AND AIR POLLUTION

PROBLEMS AND OBIJECTIVES

Air pollution is a fact of contemporary Life. It is not only deleterious
to human health, material, and household and commercial establishments as dis-
cussed in the preceding sections, but it is also recognized as a causal agent
of damage to vegetation. Urban expansion and industrialization have resulted
in deteriorated air quality in many major cities in the United States. Though
social concern with the problem of contaminated air can be dated back to as
early as the 13th century, the biological effects of degraded air are not thor-
oughly understood even now. Some progress has been made, however, in recent
years. According to Naegele (1973), Laboratory and chamber studies of individual
plants under somewhat controlled environments have contributed to the awareness
of the complexity of plant response to toxicants. Acute and even chronic responses
of plants to deteriorated air are being studied and documented.

There are three principal air pollutants of major interest to agricultural
plants; namely, sulfur dioxide, fluorine compounds and smog. Regarding smog,
there are two distinct types, with numerous intermediate grades: the London
type, which is a mixture of coal smoke, fog and sulfur dioxide, and the Los
Angeles type which is a mixture of ozone and peroxidized organic compounds. 1/

Studies on the effect of sulfur dioxide (802) on vegetation are voluminous.
Stoeckhard (1871) reported 802 injury to plants as early as 1871. Since then
more than 700 articles have been published regarding the effects of Sozupon
vegetation. The documents point to a great variation in plant responses to the
pollutant. This variation in plant responses can be accounted for by such fac-
tors as genetic composition, stage of development, climatic factors, interactions
between pollutants, the time of day of exposure, and soil moisture.

The effects of air pollution are customarily classified into two categories:
(1) visible effects, which are identifiable pigmented foliar patterns as a re-
sult of major physiological disturbances to plant cells, and (2) subtle effects,
which are not visibly identifiable, and may be identified when physiological
change occurs in the plant. The disturbance of biochemical processes at the
molecular Level is the cause of both the visible and subtle effects. Within the
category of visible effects, acute and chronic injury can be identified. Acute
injury is a severe injury as a result of a short-term, but high concentration
of the pollutant. Chronic injury is light to severe injury; it develops from
exposure to long-term low pollutant concentration.

1/ For a detailed discussion on the types of air pollutants causing damage to
vegetation, see Thomas (1961).
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The effects of oxidant on vegetation have been studied since the early part
of this century. Oxidant or smog type symptoms were identified with the reac-
tion product of ozone and reactive hydrocarbons. The symptoms were also associ-
ated with a new toxicant, peroxiyacetyl nitrate (PAN), which was generated ex-
perimentally by photochemical reaction of a mixture of nitrogen dioxide and re-
active hydrocarbon (Stephen et al., 1960). Nitrogen dioxide is also a phototoxi-
cant at high concentration levels. Benedict and Breen (1955) found tissue col-
lapse with nitrogen dioxide concentration above 20 ppm.

Generally speaking, agricultural plants are adversely affected by air pol-
lution vis-a-vis reductions in the quantity of output and/or degradation of the
quality of the product. With the information on the determinants of the biologi-
cal response of a plant to contaminated air, a reasonable, physical dose-response
relationship could be constructed. In translating the physical damage function
into a monetary damage function, the following factors should be considered:
time and growing season, market value and price of the plant, the possibility

of growing a different crop and the opportunity cost of the site for growing
the plant.

Waddell (1974) identified two general approaches to assess the economic
loss of plants due to air pollution. 1/ One approach is to survey the damage loss
on a statewide basis. Included in this category are the studies by Middleton
and Paulus (1956), Weidensaul and Lacasse (1970), Feliciano (1972), Pell (1973),
Naegele et al. (1972), and Millecan (1971).

Another approach is to construct predictive models by relating data on crop
losses to crop values, pollution emission and meteorological parameters. The
landmark study by Benedict and his associates (1971, 1973) at Stanford Research
Institute (SRI) is probably the only study undertaken so far which provided some
essential background material for further investigation. The SRI study estimated
plant losses caused by air pollution in those U.S. counties where major pollutants
(oxidants, SOZ' and fluorides) are expected to produce adverse effects on plants.

The major contribution of the SRI study is the provision of a wealth of
data for the development of economic damage functions or of more sophisticated
predictive models when better dose-response data are available. However, the
study also contains the following weaknesses: (1) the damage factors were at
best educated guesses and are subject to criticism; (2) yearly variations in
climate and meteorology were not allowed for; (3) ornamentals were undervalued
since only replacement costs were used as a proxy for aesthetic values; and (4)
the subtle effects of air pollution which causes no visible injury were ignored.
However, some subtle injuries were indeed included, contrary to most critics.
The amount was a rough guess and, with the exception of citrus and grapes, could

1/ See Waddell (1974) for a detailed discussion.
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have been much larger or much smaller depending on the plant species. Latest
information shows that such losses to forests and perhaps cotton in California
are much greater than previously realized.1/

A review of some previous damage estimates at both the national and state
levels would give us a rough idea as to how serious the damage loss is because
of air pollution. Benedict and his associates estimated the national total damage

of visible injury to vegetation to be $132 million each year. Lacasse-Weidensaul
estimated the amount of direct losses uncovered in the survey to be more than
$3.5 million in Pennsylvania in 1969. Indirect losses were estimated to be $8
million. Feliciano reported the losses to agriculture in New Jersey due to air
pollution were about $1.19 million in 1971. Naegele estimated direct economic
losses for the 1971-72 season at $1.1 million. Finally, Millecan estimated a
monetary loss of $26 million in crops in California in 1970.

In summary, the problems in the field of vegetation and air pollution are
similar to those delineated previously in other categories, i.e., the lack of
reliable scientific damage functions and the presence of a wide range of damage
estimates. The primary objective of this section is to review the state of the
art and derive, through existing documentation and data, an integrated economic
damage function of air pollution on vegetation for purpose of prediction. The
remaining part of this section contains the following subsections: Dose-Response
Relationships, Economic Damage Functions, and Concluding Remarks.

DOSE-RESPONSE RELATIONSHIPS

Some crude dose-response relationships for various types of crops have been
derived. O'Gara (1972) estimated the first such function for alfalfa under condi-
tions of maximum sensitivity, as follows:

(C-0.33t) = 0.92 (VI-1)

where C is the concentration level to be estimated with respect to time t
in hours. The constant 0.33 ppm represents a concentration that presumably can

be endured indefinitely, i.e., the threshold level, without prolonged fumigation.
That is to say that C = 1.25 ppm for t = 1.0.

The O'Gara equation was generalized by Thomas and Hill (1935) for any degree

of leaf destruction and any degree of susceptibility. The generalized equation
can be specified as:

t(c-a) = b (VI-2)
1/ Personal correspondence with Dr. H. M. Benedict.
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where t = time, hours, ¢ = pollutant concentrations above a, a = threshold concen-
tration below which no injury occurs, and b = constant.

With maximum susceptibility, the generalized equations were shown as follows:

t(c-0.24) = 0.94 traces of leaf destruction

t(c-1.4)

2.1 50 percent leaf destruction

t(c-2.6)

3.2 100 percent leaf destruction

Zahn (1963) developed an equation which modified the O'Gara equation and

provides better fit over a longer period of time. The equation

is shown as fol-
lows:

t = b1 + 0.5C (V1-3)
c(C=-a)

The threshold level a was given as 0.1 for alfalfa; b is the dimensional
resistance factor which incorporates the influence of environmental conditions.
An alternative experimental formula was suggested by Guderian, Van Haut
(1960) and Stratmann (1963). The formula gives best fit to their observations

for either short- or long-term exposures.

Ke-b(C - a)

(V1-4)

where K= vegetation life time, in hours, t; a, b, and C are the same as

in (VI-3). These parameters may vary with species, environmental conditions,
and degree of injury. 1/

Although several physical dose-response relationships have been determined,
economic damage functions for vegetations are largely nonexistent. The economic
damage functions described in the following section employed input data on vege-
tation losses obtained from the Benedict study (1971,1973).

1/ The dose-response equations developed by Zahn, and Guderian, Van Haut and
Stratmann were summarized in Environmental Protection Agency, Effect of

Sulfur Oxides in the Atmosphere on Vegetation, op cit. The references were
contained therein.
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Benedict et al. derives crop loss estimates by using the product of three
factors, i.e

Crop Loss = crop value . crop sensitivity to the pollutant
regional pollution potential (VI1-5)

The regional pollution potential is a relative severity index of pollution,
estimated for each county selected in the Benedict study on the basis of emission
rates which are, in turn, derived from fuel consumption data. The relative sensi-
tivity of various plant species to the pollutants was determined from a litera-
ture review. Each crop or ornamental was classified as to whether the part of

the plant directly affected by the pollutants had high, medium or no economic
value.

Despite the fact that the ceteris paribus type of dose-response functions
has been developed and refined for certain types of vegetation, such functions
are still unavailable for a majority of vegetations even now. Furthermore, the
multivariate physical damage functions relating plant damage to several relevant
explanatory factors are yet to be developed. In the absence of reliable plant

dose-response functions, only rough estimates of economic damages for various
plants can be derived.

ECONOMIC DAMAGE FUNCTIONS

Of more relevance to policymakers at both the national and local levels,
however, are the monetary or economic damage functions which transform all as-
pects of dose-response relationships into one common unit of measurement, i.e.,
money. An attempt was made in this study to estimate such economic damage func-
tions which relate economic losses of a variety of crops to air pollution con-
centration levels and climatological variables.

The crops and agricultural products for which the economic damage functions
were estimated include corn grain, soybean, cotton, vegetable, other vegetable,
nursery, floral, forestry, field crop, fruit and nuts, total crops, total orna-
mentals, and all plants. The selection of the crops is based mainly on the eco-
nomic importances of these crops to the United States. However, it is understood
that different cultivating procedures and methods as well as relocation of crop
growing patterns in the United States will result in reduction in air pollution
damage to crops.

A stepwise linear multivariate regression model was developed for determin-
ing the economic damage functions for the selected crops and plants, as follows:

CROPLi= atb CROPV; + ¢ TEMB + d TEMA + e SUN + f RHM+g DTS

+h802+jOXID (VI-6)
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where CROP denotes the economic loss (in $1,000) of the ith type of crops
by county from the Benedict study; ©CROPVi the output value (in $1,000) of the
ith type of crops by county; TEMB and TEMA stand for, respectively, the
number of days in a year with temperature below 33°F and above 89°F; SUN rep-
resents possible annual sunshine days; RHM, relative humidity; DTS number of
days with thunderstorm; SO2 sulfur dioxide concentration or relative severity
index; and OXID the oxidant relative severity index.

Data used for the regression analysis were obtained from prior studies on
vegetation losses and the official publication on climatological data. As noted
earlier, the disaggregated data on the vegetation losses and the values of the
crops by county were obtained from the Benedict study. It should be pointed out
that only the aggregate data on vegetation by regions are presented in Benedict
et al. (1973). The crop data in the published form were integrated so as to pre-
serve some anonymity about certain single sources of pollution. The data for
CSO02 and OXID were taken from Table 7 of Benedict et al. (1973), and the data
for TEMB, TEMA, SUN, RHM, DTS were secured from the U.S. Department of Commerce,
Local Climatological Data. Since the climatological data were not available for
all counties or cities, data for a nearby city were, hence, substituted for the
missing information for a number of counties. Finally, the annual mean level

for 802 was taken from the U.S. Environmental Protection Agency, Air Quality
Data - 1972 Annual Statistics.

Although estimates on crop values and crop losses are available for a total
of 679 counties in the United States, a thorough examination of the data reveals
that some counties have zero crop damage estimates and, hence, are not suitable
for inclusion in the study sample. In addition, both climatological and pollution
data are unavailable for a number of counties, but for which positive crop loss
estimates were available. Only 74 counties have both positive crop loss esti-
mates and data on climate and pollution levels. Thus they were selected for
this study for deriving the vegetation economic damage functions.

The dependent and explanatory variables used in the regression analysis

are described in Table VI-1. It should be noted that for sulfur dioxide two al-
ternative measures were available: the first measure is the relative severity
index constructed on the basis of pollutant emissions, concentration rate factor
and episode days by Benedict et al. (1971), i.e., GCSO2..The second alternative
measure, S02,is the annual mean level for sulfur dioxide (ug/m3). Both measures
were used in the regression analysis, and the regression results are separately
reported in Tables VI-2 and VI-3. With regard to oxidants, the relative severity
index for oxidants was also provided by Benedict et al. (1971). However, data
on the annual mean level of oxidants are insufficient for this study. Thus, only
the former measure was used in the regression analysis. The regression results
containing oxidants are presented in Tables VI-2 and VI-4.

Some remarks on the regression results are in order. The values below the
regression coefficients are standard errors with * indicating that they are
significant at the 1 percent level. The signs of the regression coefficients
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TABLE VI-1. VARIABLES USED IN ECONOMIC DAMAGE FUNCTIONS

A. Dependent variables - vegetation loss (in $1,000)

CORNL Corn grain loss.
SOYBL Soybean loss.

COTNL Cotton loss.

OVGTL Other vegetable loss.
NUSRL Nursery loss.

FLORL Floral loss.

FRSTL Forestry loss.

FCROL Field crops loss.
FRNTL Fruit and nuts loss.
VEGTL Vegetable loss.
TOCRL Total crop loss.
TOORL Total ornamentals loss.
ALPLL All plant loss.

B. Explanatory Variables

CROPV The value of the vegetation in question (in $1,000)
TEMB Number of days with temperature 32°F or below.
TEMA Number of days with temperature 90°F or above.

SUN Possible annual sunshine days.

RHM Relative humidity.

DTS Number of days with thunderstorm.

S0, Annual mean level for sulfur dioxide (ug/m3).

OXID The relative plant-damaging oxidant pollution

potential index.
C802 The relative plant-damaging sulfur dioxide
pollution potential index.
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TABLE VI-2. ECONOM C DAMAGE FUNCTI ONS ON VEGETATION W TH PCLLUTI ON

RELATI VE SEVERITY INDICES (in $1,000)

a CROPV TEMB TEMA SUN RHM DTS CS0, OXID R,
(1) CORNL 4.4 0.001 0.02 0.09 -0.13 0.16 -0.041 6.73 -0.85 0.28
(32.1)  (0.001) (0.04) (0.10) (0.35) (0.34) (0.10) (1.84)* (2.18)
(2) soYBL -2,2 0.003 0.01 0.04 -0.04 00.05 3.58 0.24 0.26
(0.3)  (0.001)* (0.03) (0.07) (0.28) (0.74) (1.49)* (1.65)
(3) CcoTNL -5.8 0.0063 © 0.0006 -0.054 0.067 0.03 0.03 0.05 0.57 0.98
(6.9)  (0.0002)* (0.0094) (0.028) (0.077) (0.07) (0.02) (0.40) (0.48)
(4) OVGTL 133.6 0.006 -0.03 -0.44 2.02 0.10 0.06 97.73 0.96
(58.5)* (0.001)* (0.08) (0.22) (0.63)*% (0.65)  (0.21) (3.71)*
(5) NUSRL -113.1 0.11 1.12 -0.19 0.35 -2.95 2.34 191,51 0.90
(300.2)  (0.02)* 0.42)%  (1.03) (3.27)  (3.26) (1.02)* (33.09)*
(6) FLORL -616.4 0.10 0.93 -0.30 -0.79 -6.7 3.03 356.3 0.93
(485.2)  (0.01)* (0.57) (1.41) (4.37)  (4.4) (1.37)* (30.8)*
(7) FRSTL -616.4 0.071 1.93 -2.33 5.20 -1.88 4.77 370.52 0.96
(485.2)  (0.003)* (0.70)*  (1.63) (5.34) (5.33) (1.71)* (30.71)*
(8) FCROL  520.5 0.003 0.28 1.17 -5.61 -3.26 -1.20 54,07 0.35
(222.3)* (0.002) (2.44)*% (2.44) (0.77) (14.20)*

(0.32)  (0.82)
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TABLE VI -2 (Concl uded)

(9) FRNTL -90.9

(10)

(281.2)

VEGTL -308.8
(168. 4)

0.061
(0. 006) *

0.011
(0.002)*

0. 83 0.43 -2.28 0.28 1.74
(0.43)*  (1.00) (3.18)  (3.09)  (0.98)
-0.33 -1.66 4.92 1.05 0.08
(0.23) (0. 64) * (1.80)* (1.85)  (0.60)

121.3
(18.02.)*

136. 02
(10. 69) *

0.82

0.89
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TABLE VI-3. ECONOMIC DAMAGE FUNCTIONS OF VEGETATION, WITH SULFUR DIOXIDE

ANNUAL MEAN LEVEL (In $1,000)a/

/4

a CROPV TEMB TEMA SUN RHM DTS 50, (ug/m3) R
(1) CORNL.  10.6  0.0013 0.015 0.11 0.38 0.21 0.0008 0.10
(31.0) (0.0007) (0.045)  (0.09) (0.32) (0.0960)
(2) COTNL  -9.4  0.0063 -0.0004 -0.05 0.11 0.07 0.02 0.0005 0.98
(6.2) (0.0002)* (0.0089) (0.03) (0.66)  (0.07) (0.02) (0.0195)
(3) OVGTL -803.0  0.009 -0.72 -1.05 9.44 6.82 -1.58 0.27 0.60
(181.1)* (0.003)* (0.27)*  (0.77) (1.95)% (2.00)*  (0.67)%  (0.57)
(4)NUSRL -780.2  0.20 0.77 -0.98 7.79 1.19 1.87 0.40 0.85
(350.6)* (0.01)* (0.51) (1.25) (3.81)* (3.86) (1.25) (1.06)
(5) FRSTL-3,315.6  0.065 -3.52 -1.29 36.53  24.3 -3,05 2.30 0.87
(785.0)* (0.005)% (2.90) (1.17) (8.57)*% (8.63)*  (2.82) (2.44)

a/ For the 10 types of vegetations,
FRSTC yields a positive SO,

Only those five damage functions with a positive S0, are reported here.

t he econom ¢ damage functions for CORNL COTNL OVGIL NUSRL and
whil e the renmining regression equations contain a negative S02.
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TABLE VI-4. ECONOMIC DAMAGE FUNCTIONS ON TOTAL CROPS, TOTAL

ORNAMENTALS AND ALL PLANTS (in $1,000)3/

2
a CROPY TEMB TEMA SUN RHM DTS OXID S0, (ng/m3) R°
(1) TOCRL -375.7 0.011 -0.66 -6.81 . 12.93 -8.12 1.25 1,262.5 0.96
(762.8) (0.003) % (1.07) (2.80)* (8.45) (8.40) (2.77) (50.26)*
(2) roor, -519.7 0.074 3.18 -1.61 -0.91 -6.36 9.09 769,31 0.92
(965.5) (0.004) (1.38) (3.28) (10.59) (10.63) (3.42) (60.87)
(3) ALPLL =-2,251.3 0.039 0.50 -16.02 18.02 7.84 9.3, 1,892.46 0.92
(1,908.9) (0.006)* (2.73) (6.76)% (21.49) (20.83) (7.21) (121.58)*
(4) TOCRL ~8,247.2 0.032 -9.07 -16.40 93,30 74,72  ~15.44 3,15 0.59
(2,302.4) (0.011)* (3.38) (9.03) (26.04)* (25,07)% (8.76) (7.19)
(5) TOCRL -5.927.4 0.0469 -2 010 ANk &1 20 LG 97 -4 921 L, N4 0 o2y
Lt bl R e Vevw s TeVUIT 4.V Ui, 0 A ER ¥ A\ R A G40 V.74
(1,630.8)* (0.008)* (2.41) (6.03) (17.82)* (17.97)* (5.89) (5.07)
(6) ALPLL -14,350.5 0.05 812,53 -24.98 - 150.45 128.37 -20.13 6.87 0.64
(3,835.7)* (0.01)* (5.69)* (14.52) (43.62)* (41.68)* (15.06 (11.84)

a/ Equations (1) through (3) are economc damage functions of total crops, total ornanental and

all plants with OXID as the sole pollution variable, while equations (4) to (6) are simlar
econoni ¢ damage functions with S02 rather than OXID as the sole pollution variable.



are nostly conpatible with a priori expectations. Specifically, the sires of

the pollution variables are-nostly correct except in equation (1) of Table VI-

2 in which a negative sign for OXID appears. The negativity of OXID may be

substantially attributable to the multicolinearity between the two pollution

variables, €SO, and OXID (r =0.31) because OXID changes sign from positive

to negative inmmediately when CSO2 was picked up by the regression equation.l/
Uilizing pollution severity indexes in the regression, a w de range of

R2 is obtained, ranging from 0.25 for soybeans to 0.98 for cotton. However,

when the annual nean |evel of S02 was included as the sole pollution variable,

the independent variables explain a mninmm of about 10 percent of the variations

in corn losses and a maxi mum of 98 percent of the variations in cotton |osses.

The coefficients for the pollution severity indexes, i.e., CSOg which were

constructed on the basis of pollutant emnissions, concentration rate factor and

epi sode days and OXID, are nostly significant at the 1 percent |evel whereas

no coefficients for SO, are significant even at the 10 percent level. This re-

sult lends support to the hypothesis that it may not be appropriate to use pollu-

tion nmeasures nostly recorded in the central city to represent countyw de pollu-

tion level. Furthernmore, it should be noted that the variable DTS was intention-

ally excluded from equation (1) of Table VI-3 to preserve the positive sign of
S02.2/

Using Equation (4), (5) and (6) in Table VI-4, econonic damages of tota
crops, total ornanmental and all plants were estinated for the 74 counties. The
results are presented in Table VI-5. The table reveals that while total crop
damages reached about $4 million in Los Angeles, Oange and San Diego counties
all in California, San Bernadino suffered the largest ornanental danmages and
all plant damages in the order of $8.5 million and $10.6 nmillion, respectively.

Intercorrelation anong explanatory variables may not constitute a serious
problemif prediction is the prinmary objective, provided, of course, the inter-
correlation is expected to persist in the future. However, if nulticolinearity
results in an incorrect sign of the key variable, S05, a statistical interpreta-
tion of the SO coefficient would be meaningless, and the exclusion of DTS is,
hence, warranted.

1/ 1t should be noted that RHM was intentionally excluded from equation
2 in Table VI-2 because the inclusion of RHM resulted in a negative
OXI D

2/ Wen DTS is included, the regression equation, however, changes
to read as foll ows:

CORNL = 9.6+ 0.0013 CROPV + 0.02 TEMB + 0.14 TEMA - 0.41 SUN

(31.3) (0.0007) (0. 05) (0.12) (0. 33)
+0.27 RHM + 0.05 DTS - 0.004 SO,
(0. 35) (0. 10) (0.097)
®% = 0.10
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TABLE VI.5. ESTIMATED ECONOMIC DAMAGES OF TOTAL CROPS, TOTAL
ORNAMENTALS AND ALL PLANTSA/

{(in $1,000)
(1) 2) (3) (4)
Estimated Estimated Estimated
Total Total All
Crop Ornamental Plant
Counties Damagertl/ Damagcsﬁ/ Damagesd/
Jefferson, Alabama - .- -
Maricopa, Arizona 1,947 605 3,214
Alameda, California 3,708 1,527 5,677
Los Angeles, California 4,591 3,658 8,350
Orange, California 4,330 1,249 6,675
San Bernadino, California 3,780 8,481 10,606
San Diego, California 4,008 2,434 6,908
Fairfield, Connecticut 703 530 1,140
New Haven, Connecticut 847 423 1,290
New Castle, Delaware 136 2 89
Santa Rosa, Florida - - .-
Chatham, Georgia - 28 -
Fulton Georgia 139 185 250
Honolulu, Hawaii 3,178 885 4,596
Cook, 1llinois 149 766 888
Lake, Indiana 161 82 335
Marion, Indiana 356 144 602
St. Joseph, Indiana 4462 106 692
Vanderburgh, Indiana 407 277 633
Polk, Iowa 522 58 841
Sedgwick, Kansas 159 103 301
Shawnee, Kansas 122 38 222
Wyandotte, Kansas 315 231 565
Boone, Kentucky -- - --
McCracken, Kentucky 281 217 407
Cumberland, Maine 381 209 549
Anne Arundel, Maryland 144 139 177
Baltimore, Maryland 281 1,257 1,192
Harford, Maryland 148 - 83
Howard, Maryland 84 - -
Montgomery, Maryland - - -
Prince Georges, Maryland - - -
Berkshire, Massachusetts - - -
Bristol, Massachusetts 280 87 311
Middlesex, Massachusetts 894 444 1,359
Worcester, Massachusetts 185 423 533
St. Louis, Missouri 19 230 405
Douglas, Nebraska 327 227 527
Lancaster, Nebraska 563 265 990
Rockingham, New Hampshire 117 333 286
Mercer, New Jersey - - -
‘Bernalillo, New Mexico - - -
Albany, New York .- - -
Erie, New York 294 389 835
Monroe, New York - - -
Niagara, New York 257 - 405
Oneida, New York - - -
Forsyth, North Carclina 114 51 142
Clark, Ohio 187 - 266
Cuyahoga, Ohio 151 322 458
Franklin, Ohio - - -
Hamilton, Ohio - - -
Jefferson, Ohio - - -
Mzhoning, Ohio 281 124 494
Montgomery, Ohio 72 &2 180
Stark, Ohio - - -
Summit, Ohio - - -
Multnomah, Oregon 102 - -
Indiana, Pennsylvania - - -
Washington, Rhode Island 175 - 21
Greenville, South Carolina - - -
Davidson, Tennessee - - -
Hamilton, Tennessee .- -— .-
Knox, Tennessee 267 77 393
Shelby, Tennessee 303 387 595
Tom Green, Texas - - -
Nansemond, Virginia 995 224 1,364
York, Virginia 803 327 1,079
King, Washington 834 1,249 1,876
Pierce, Washington 711 837 1,407
Spokane, Washington -- 286 -
Dane, Wisconsin 1,070 132 1,759
Milwaukee, Wisconsin 340 147 517
Natrona, Wyoming - - -

a/ “--" denotes that the estimates are either insignificant or unreliable.
b/ Estimates based on equation (4) in Table VI-4.
¢/ Estimates based on equation (5) in Table VI-4,
d/ Estimates based on equation (6) in Table VI-4,
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Utilizing the "average" economic damage functions presented in this section,
the changes in crop losses brought about by changes in the pollution or climato-
logical variables can be easily estimated. For the sake of illustration; but
without loss of generality, consider equation (6) of Table VI-4. The partial

elasticity of ALPLL with respect to S02 evaluated at their mean values (see
Table VI-6)is

E = 6.87 20.5/7 = 0.18.
pLso_ 6.87 x (20.5/790) = 0.18

Thus, if the SO2 level in the air is lowered on the average by 2 ;,.l.g/m3
from 20.5 pg/m3 to 18.5 pg/m3 (i.e., 10 percent reduction), then economic damage
to all plants, on the average, could reduce by $74,220, $790,000 x 1.8 percent
from $790,000 to $715,780. The partial elasticities for other variables of in-
terest in the economic damage functions can be similarly computed, and the results
are amenable to analogous interpretation.

CONCLUDING REMARKS

Economic damage functions estimated in this section are replete with con-
ceptual difficulties. The task of translating physical damage functions into
monetary damage functions involves a rather anthropocentric-egocentric evalua-
tion procedure. This is generally the case because the evaluation, and subse-
quently adoption, of the physical damage functions by Benedict_et al. is mainly
based on our own value judgments rather than on any scientific substance. Fur-
thermore, the damages suffered or anticipated by the receptors may well lead
to changes in the market behavior, and hence, the market prices may not correctly
reflect the welfare loss associated with the physical damages.l/

In spite of the various conceptual difficulties associated with translating
physical damages into dollar worth equivalents, economic damage functions, were
estimated for a variety of vegetation in this study. In view of the numerous
inherent weaknesses in the prior study and other conceptual and empirical diffi-
culties associated with the estimation of economic damage functions, the damage
functions presented in this section, though useful for estimating possible damage

reductions brought about by pollution abatement programs, should be interpreted
and employed with proper caution.

Finally, it is widely recognized that the best way to determine the occur-
rence and severity of an air pollution episode is to install a network of re-
corders to measure the daily and hourly concentration of various pollutants and

the physical effects simultaneously. Although such nationwide networks have been

1/ For a detailed discussion on some conceptual difficulties with economic dam-
age functions, see Hans Opschoor, "Damage Functions, Some Theoretical and
Practical Problems,” in Environmental Damage Costs, Paris, OECD (1974).
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TABLE VI-6. MEAN AND STANDARD DEVIATIONS OF VARIABLES
IN VEGETATION DAMAGE FUNCTIONS.‘?_/

Standard
Variable Mean Deviation
CORNL 6.3000 13.5973
SOYBL 3.8838 11.0622
COTNL 2.8176 18.7760
OVGTL 32.3865 120.5110
NUSRL 72.2946 370.8508
FLORL 150.8000 622.7670
FRSTL 208.3392 894.3120
FCROL 48.7608 106.6920
FRNTL 56.2486 257.2594
VEGTL 58.2176 197.5723
TOCRL 436.6257 1502.4422
TOORL 353.8257 1334.1816
ALPLL 790.4486 2651.6519
CORNV 1199.6392 2347.7278
SOYBV 562.8405 1330.7283
COTNV 439.0622 3088.3767
OVGTV 992.6432 4300.7229
NUSRV 728.7108 1755.0623
FLORV 1441.2243 3055.6803
FRSTV 2734.4284 10586.1798
FCROV 6435.3541 8530.7033
FRNTV 1154.7284 3037.2926
VEGTV 1660.6703 5341.7627
TOCRV 11905.0000 16015.2235
TOORV 5576.9757 12421.3958
ALPLV 17473.4527 22764.5429
SO2 20.4595 17.7148
SUN 59.5135 6.6647
DTS 34.5811 18.8999
TEMA 26.2027 24.2735
TEMB 82.4595 40.6061
OXID 0.4586 1.0726
SCO2 0.7927 0.9200
RHM 58.8108 6.9394

a/ The values of crop losses and crop values are
expressed in $1,000
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set up, the individual stations are unfortunately mostly located in the center
of large metropolitan areas or industrialized areas. Few stations have been lo-
cated in agricultural areas or in suburban areas where most of the vegetation

is grown. Furthermore, a substantial amount of SO2 is produced by power plants
and various smelter operations which are generally located outside of SMSA's.
This difficulty of a lack of meaningful information on pollution levels in subur-
ban or rural areas has motivated earlier investigators to resort to fuel consump-
tion, number of pollution episodes, and the tendency of atmospheric conditions

to derive the air pollution damaging potential estimates. After all, it is imper-
ative to conduct research directed at obtaining information on vegetation-at-
risk isopleths for various counties in the United States, so that more reliable
economic damage estimates for vegetation can be derived for policy decisions.
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SECTION VII

AGGREGATE ECONOMIC DAMAGE COSTS AND FUNCTIONS: AN OVERALL VIEW

Air pollution constitutes a modern problem which goes beyond the technology
of simply controlling the pollutants. The need for effective control is generally
recognized, but arguments against control proposals also prevail. These arguments
are mainly based on economic grounds--whether or not the cost of attaining a
specified level of ambient air quality exceeds the economic benefit that would
be realized from a control program. The regional damage estimates developed in
the preceding six sections provide some of this much needed information, how-
ever crude it may be, for evaluating the economic feasibility of a specific air
pollution control program.

This final section presents an overall view of the economic damages and
damage functions of various receptors that were derived in the preceding six
sections. Further, "aggregate" economic damage functions defined with respect
to several effect categories are developed by regressing the aggregate damages
to the same set of explanatory variables used earlier in the development of
the "individual" effect economic damage functions. Aggregate damage estimates
for selected categories of damaging effects are also computed and presented.

The economic damage estimates for the effect categories of human health,
material, and household soiling are summarized in Table VII-1, for the 40 SMSA's
having an SO?2 level equal or greater than 25 p,g/m3.These 40 SMSA's are listed
in Column 1. Column 2 (HNC1) and Column 3 (HNC2) present, respectively, the low_
and the high damage estimates of human health; the material deterioration damage
estimates of both paint and zinc as derived in Section V are summarized in Column
4 (MDC). Column 5 (TNSCO) contains the total net household soiling damages as
described in Section 1V. Based upon the low and high damage estimates of human
health presented in Columns 2 and 3, respectively, two sets of low and high ag-
gregate damage estimates for the three effect categories were estimated and pre-
sented in Column 6 (TNC1) and Column 7 (TNC2).

Specifically, the following two equations were used for computing HNC1
and HNC2 for the 40 SMSA's.

HNC1 = HNCSO, + HNCTSP (VII-1)

HNC2 = Maximum of (HNCSO,, HNCTSP) (VI11-2)

where HNCSO2 and HNCTSP are, respectively, the net health damages attributable
to SO, and TSP. These two aggregate damage estimates were computed by summing the

mortality and morbidity costs due to 502 and TSP derived in Sections Il and I11;
namely,
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TABLE VII-1. ECONOMIC DAMAGES DUE TO AIR POLLUTION, BY
RECEPTORS FOR SELECTED SMSA's
(in $ million, 1970)

(1) (2) (3) (4) (5) (6) (7)
SMSA's HNC1 HNC2 MDC TNSCO TINC1 TNC2

1. Akron, OH 10 18 7 16 33 41
2. Allentown, PA 8 15 3 16 27 34
3. Baltimore, MD 48 80 17 137 202 234
4. Boston, MA 49 52 26 117 192 195
5. Bridgeport, CT 3 5 6 3 12 14
6. Canton, OH 6 6 11 14 31 25
7. Charleston, WV 3 3 4 10 17 17
8. Chicago, IL 191 360 105 516 812 981
9. Cincinnati, OH 22 22 12 57 91 91
10. Cleveland, OH 55 93 49 216 320 358
11. Dayton, OH 18 18 9 39 66 66
12. Detroit, MI 129 161 55 294 478 510
13. Evansville, IN 2 2 2 5 9 9
14. Gary, IN 12 24 8 24 44 56
15. Hartford, CT 12 19 5 16 33 40
16. Jersey City, NJ 11 17 8 17 36 42
17. Johnstown, PA 4 4 1 10 15 15
18. Lawrence, MA 3 5 7 3 13 15
19. Los Angeles, CA 123 147 76 388 587 611
20. Minneapolis, MN 21 32 12 37 70 81
21. New Haven, CT 3 5 4 4 11 13
22. New York, NY 352 527 111 418 881 1,056
23. Newark, NJ 39 48 14 112 165 174
24. Norfolk, VA 13 13 3 29 45 45
25. Paterson, NJ 7 7 13 9 29 29
26. Peoria, IL 4 4 9 8 21 21
27. Philadelphia, PA 107 158 33 104 244 295
28. Pittsburgh, PA 45 79 30 147 222 256
29. Portland, OR 13 13 8 30 51 51
30. Providence, RI 16 25 9 20 45 54
31.. Reading, PA 5 5 4 15 24 24
32. Rochester, NY 13 15 7 27 47 49
33. St. Louis, MO 44 61 24 119 187 204
34. Scranton, PA 5 5 2 23 30 30
35. Springfield, MA 12 15 3 7 22 25
36. Trenton, NJ 3 3 2 5 10 10
37. Washington, DC 48 88 21 86 155 195
38. Worcester, MA 3 4 8 6 17 18
39. York, PA 4 4 2 9 15 15
40. Youngstown, OH 9 10 8 23 40 41
Total 1,475 2,166 736 3,134 5,349 6,040
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functions. The regression results pertaining to overall human health damage
are presented in Column 1 to Column 4 in Table VII-2. The overall economic
damage functions for zinc and paint, for household soiling and for plants
derived in the previous sections are also presented in the table in Columns
5 6 7, 8 9, and 10

The existence of an economic damage function does not in itself provide
us with sufficient information to make any policy recommendations. Quantitative
estimates of the magnitudes of the relationship are required. As discussed ear-
lier, this information can be obtained directly from the estimated regression
coefficients. The coefficients in the regression equation indicate the changes
in the dependent variable in response to a one unit change in the associated
explanatory variable ceteris paribus. The coefficients can be used for computing
the elasticities under given conditions. A distinguishing feature of the concept
of elasticity is that it is a unit free measure of the percentage change in the
dependent variable with respect to the percentage change in the independent var-
iable. Given the elasticity estimates, we are able to answer the question, "What
would the effect of a reduction in the pollution level be, ceteris paribus, on
the level of economic damages of various receptors?”

Table VII-3 contains estimates of a hypothetical reduction in the air pollu-
tion concentration level for the several pollution receptors analyzed and presented
in Table VII-2. The first column in this table presents the dependent variables.
Column 2 shows the estimated values of the coefficients of the SO or TSP var-
iables. The next two columns list the mean values of 809, TSP, and the economic
damages of the various receptors. The estimated elasticity of economic damages
of a particular receptor with respect to 802 or TSP, evaluated at the means of
both variables, is found in Column 5. These elasticities indicate the percentage

change in the economic damages that would result, on an average, from a 1 per-
cent change in 802 or TSP.

Of particular interest to the policymaker is the effect of a given discrete
change in the pollution level on the economic damages of a particular receptor.
Assuming that the federal government is considering the implementation of a pol-
lution control program which is expected to lower the pollution level, on the
average, by 10 percent, the average benefit of a receptor can be calculated
by multiplying the coefficient of SOZ or TSP by 0.10 times the mean value of
802 and TSP. These estimates can be found in Column 6.

The study of Table VII-3 reveals that the partial elasticities of gross
economic damages of the receptors included in our study vary from 0.004 to 1.28.
Furthermore, a 10 percent reduction of the air pollution level would result in
a decrease in the annual economic damages in the range of $0.01 million for plants
(ALPLL) to $5.26 million for the soiling effect of zinc (SDC2Z).

The implication of our study for pollution abatement strategies is obvious.
Any effort to reduce the current pollution level appears to have a varyingly
significant impact on the economic damages resulting from the harmful effects
of air pollution. Admittedly, the implication of this study must be qualified
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HNCSO, = Mortality cost due to SOZ+ morbidity cost due to 302

HNCTSP

Mortality cost due to TSP + morbidity cost due to TSP

Total material damages (MDC) in Column 4 is the sum of deterioration dam-

ages on both materials, zinc and paint. Specifically, it was calculated as
follows:

MDC = DDCZ + DDCP (VII1-3)

with DDCZ, and DDCP defined and computed previously in Section V.

Finally, Column 6 (TNC1) and Column 7 (TNC2), which represent the low and
high human health damages, respectively, plus other damages, were calculated
as follows:

TNC1 HNC1 + MDC + TNSCO (VIl-4)

TNC2

HNC2 + MDC + TNSCO (VII-S)

An inspection of Table VII-1 reveals that while New York and Chicago SMSA's
had the largest aggregate air pollution damages, in the order of $1 billion,

the smallest air pollution damages occurred in Johnstown and York, Pennsylvania,
in the magnitude of $15 million in 1970.

Total material deterioration damage, including deterioration for zinc and
paint, amounted to $0.7 billion for the selected 48 SMSA's under study. The
corresponding figures for net household soiling was estimated at $3 billion,
respectively. The damage on vegetation for this nation was estimated, according
to Benedict, to be $132 million. These damage figures employed in this study

were taken from earlier studies which were completed under various stringent
assumptions.

AGGREGATE ECONOMIC DAMAGE FUNCTIONS

In order to develop marginal equivalent economic damage functions for the
purpose of predicting damage or benefit, and for designing pollution control
strategies, the overall economic costs of human health in the presence of SO,
(HCSO,) and that in the presence of TSP (HCTSP) were respectively regressed
not only against pollution and relative humidity, but also against other
relevant socioeconomic and climatological variables, e.g., PWPO, PAGE, PCOL,
PDS, DTS, SUN, etc. The least-squares regression technique was used with
input from the 40 sample observations for estimating the economic damage
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TABLE VII-2. ECONOMIC DAMAGE FUNCTIONSab.c/

Dependent Variables HCS02 HCTSP HCAP1 HCAP2 sDCZ DDCZ sDcp DDCP GRSOC ALPLL
(1) (2) (3) (C)] (5) (6) ] 8 9 (10)
Intercept 37,775 -9,939 -54,687  -46,751 -23,328.4  7,562.2 -141,199.7 -4.820.1 -25.621.0 -14,350.5
(35,512) (10,525)  (42,107) (57,923) (19,929) (6,640.4) (259.8)* *887.2 *(52,347.0  (3,835.7)*
PWPO 0.02
(0.14)
PAGE 189,112 74,828  100.580 146,324 3,432.3
(207,266) (36.937)* (179,860) (204,91%) (2,199.5)
coL 70 5 70 7 3,766.0
(89) (16) (83) (89) (1,460.0)*
PD 2.3
(4.3)
DTS 94 39 54 75 90.9 -20.13
(196) (35) (156) (195) (219.3) (15.06)
RHM 222 156 120 1200 2,679.3 86.8 911.3 31.1  -1,219.8 128.37
(489) (94) (518) (1,750.2) (56.7) (235.3)* (8.0)* (610.7)* (41.68)*
SUN 179 242 139 -235.0 -76.0 305.3 10.4 150.45
(114) (563) (632) (1,820.4) (59.0) (245.9) (8.4) (43.62)*
502 593 611 601 943.3 30.5 69.1 2.3 6.87
(78)* (74)* (77)*  (171.6)* (5.5)* (23.2)* (0.8)* (11.84)
TSP 0.0003  0.00006  0.00004 148.1 47.9 226.4
(0.002)  (0.00009) (0.00012)  (356.0)*  (11.5)* (166.9)
MANFV 78.9
(2.3)*
ME 43.1 1.4
(3.4)  (0.1)*
Yp 21.9 712.6 15.2 0.50
(18.9)  (615.5) (2.6)* (0.08)*
HU 577.2 19.7
(3.4)* (0.1)*
CROPY 0.05
(0.01)*
TEMA -24.98
(14.52)
TEMB 12.53
2 (5.69)*
R 0.66 0.25 0.69 0.68 0.64 0.63 0.99 0.099 0.92 0.64

the 1 percent level.

factor of 10

HCAP1 = HCSO2 + HCTSP = high health damage estimates.
HCAP2 = Maximum (HCSO2, HCTSP) = low health damage estimates, SDCZ, DDCZ, SDCP, DDCP, GRSOC and ALPLL are defined previously in
Chapters 1V, V, and VI.

£/ The sample observations for HCSO2, HCTSP, HCAP1 and HCAP?2 are the 40 SMSA's with SO2
the sample observations for SDCZ, DDCZ, SDCP, DDCP and GRSOC are the 148 SMSA's with population greater than 250,000. In the

case of ALPLL, 74 counties were selected in the sample observation.

b/ HCSO2 = Overall health cost in the presence of 80, HCTSP = overall health cost in the presence of TSP.

2/ The values in the brackets are standard errors of the coefficients, with * to indicate that the coefficient is significant at
The coefficients and standard errors in equations (5), (6), (7), (8) (9) and (10) are reduced by a

level equal or greater than 25 g/m3, whereas
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TABLE VI1-3. GROSS ECONOM C DAMAGES CHANGES RESULTI NG PROM A
10 PERCENT REDUCTI ON I N THE POLLUTI ON LEVEL2:b/

(6)
(2) (3) %) Economic Damage
(1) Coefficients Mean Values of Mean Value of (5 Reduction
Dependent S0y, TSP SOy, TSP Economic Damages  Partial Elasticity =0.1:(2)-(3)
Variables (103) (ug/m3) ($ million) E = (2)-(3)/(&) ($ million)
HCSO02 593 47.25 5,575.7 0.050 2.80
HCTISP 0.0003 100.87 2,431.7 -- -
HCAP1(a) 611 47.25 8,007.4 0.004 2.89
(b) 0.00006 100.87 8,007.4 - --
HCAP2 (a) 601 47.25 6,789.2 0.004 2.83
(b) 0.00004 100,87 6,789.2 - -~
SDCZ (a) 943.3 55.73 107.3 0.480 5.26
(b) 148.1 93.81 107.3 0.130 1.39
DDCZ (a) 30.5 55.73 3.5 0.480 0.17
(b) 47.9 93.81 3.5 1.280 0.45
spce 69.1 55.73 150.0 0.026 0.39
DDCP 2,3 55.73 3.3 0.039 0.01
GRSOC 226.4 93.81 434.,2 0.049 2,12
ALPLL 6.87 20.45 0.8 0.180 0.01

a/ This table is calculated on the basis of the 10 econonmic damage equations presented in Table VII-2.
b/ “--" denotes value smaller than $10, 000.



by several theoretical and empirical factors. As discussed in the previous sec-
tions, the major difficulties often encountered in estimating air pollution dam-
ages include the lack of knowledge regarding the shapes of functions describing
the relationship between air pollution and various receptors, and the lack of

a satisfactory theoretical model specifying the way air pollution affects various
receptors. The impossibility of accounting for all major factors which might
affect various receptors, the lack of reliable formulations used for translating
physical damages into monetary terms, and the presence of numerous econometric
problems have also caused concern to investigators.

Despite the existence of these difficulties, this study represents a major
step forward in our knowledge of pollution damages in that it seems to be the
first attempt to construct essential frameworks of the physical and economic
damage functions to calculate comparable regional damage estimates for the sev-
eral important receptors--human health, material, and household soiling, however
tentative they may be. More importantly, various aggregate economic damage func-
tions instrumental for transforming the multifarious aspects of the pollution
problem into a single, homogeneous monetary unit are tentatively derived and
illustrated. It is hoped that these will be useful to policymakers as they make
decisions on the implementation of programs to achieve "optimal" (where social
MR = social MC) pollution levels for this country, although proper caution must

be exercised in interpreting and employing the various economic damage functions
presented in this study.

Finally, it should be noted that although the availability of information
on average or marginal damages is instrumental in determining the optimal na-
tional or regional pollution control strategies, the current problem is far more
complex than the question of balancing the benefits to polluters against damages
inflicted on the receptors. The issues are pressing and not yet well specified.
The basic difficulty in applying the recent research findings to accurately
estimate the air pollution damage cost stems from our ignhorance about the recep-
tors at risk to air pollution. So far, few attempts have been made to identify
who suffers, to what extent, from which sources, and in what regions._]; At this
moment, updating and expansion of the available crude estimates, which are gener-
ally restricted to certain regions, are urgently needed. To identify the popula-
tion at risk to air pollution, and to measure the damage specifically for pol-

luted regions are apparently the most logical steps in the area of future re-
search.

_1_/We are aware of only one study in the area of estimating population at risk.
Namely, Istvan Jakaces and G. Bradford Shea, Estimation of Human Population-
at-Risk to Existing Levels of Air Quality, Enviro Control, Inc., Rockville,
Maryland (February 1975). This study reports the number of people within
each major social and economic classification who were exposed to 1973 levels
of various air pollutants within each standard metropolitan statistical
area and EPA regions. Estimates of the population at risk for other major
receptors, e.g., material and vegetation, have not been derived to date.
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APPENDIX A

OPTIMAL POLICIES IN THE PRESENCE OF ENVIRONMENTAL POLLUTION: A THEORETICAL
FRAMEWORK

Before we systematically present the economic damage and damage function
of air pollution for a variety of receptors, a general equilibrium framework
explicitly incorporating the effect of environmental pollution is described in
this section. Optimal intervention policies are also derived in this framework
for policy consideration. More importantly, optimal policy prescriptions are
suggested for meeting the acceptable pollution levels predetermined by the author-
ity.

. . . 1/
For analytical purposes, the following assumptions are madeT
1. Air pollution adversely affects social welfare.

2. There are two types of industries; pollution emitting and pollution

nonemitting, and air pollution is a joint product of the commodities produced
by the pollution emitting industry.

3. Air pollution adversely affects the productivity of the labor input used
in other industries.

4. By holding capital constant, labor is the only variable factor of produc-
tion in all industries in the short run.

The social utility function for the economy under consideration is written
as

U= U(X,, X,, A) (A-1)

where X; and X, denote, respectively, the vectors of commodities produced by
the first and the second industries. The first industry refers to one in which
the labor productivity is adversely affected by air pollution, and the second
industry consists of those firms which, in the process of producing commodities
X,, emit pollution into the air. A represents a vector of n pollutants existing
in the air, i.e.,{A = {a1, . . aj, ,ant.

The partial derivatives of U are subject to the following sign restric-
tions:

1/ The assumptions are made mainly for facilitating the exposition. Relaxation
of any of the postulates will not affect the conclusions.
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2

U =BU/6X1>O; U1 =62U/8X1 <0

1

2 2
U2 = BU/BX2 > 03 U22 =9 U/BX2 <0

= <
UA dU/3A 0

In view of assumption (2), the amount of air pollution emitted to the air,
A, is proportional to X,

A = aX (A-2)

where a is a matrix with elements showing the quantity of each type of pollut-

ant being emitted per unit of the commodities produced by the industry 2.

Assumption (3) permits the production function of the first industry to
be represented by

X, =F [L1 - bALlj (A-3)

where L, is the amount of labor employed in industry 1, and b
with elements indicating the loss of efficiency in
jth pollutant produced by industry 2, j =1,...,n
put is positive, it is imposed that bA< 1.

is the vector
L, due to a unit of the
. To ensure that net labor in-

Since industry 2 is assumed to be unaffected by,
for, air pollution, an externality or by-product,
represented by

or at least compensated
its production function is

X, =F, (L2) (A-4)

where L2 is the amount of labor utilized in industry 2.

Also assume that there is a pollution control sector with the following
production function

A=A (L3) (A-5)
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where A, is the quantity of air pollution abated and L; the amount of labor

utilized in the pollution control activities.

Thus, the pollution existing in the air at any point of time is simply the
difference between the quantity of pollution emitted and quantity of pollution

abated.

A= A - A = axX_ - A.(L
e c 2 c(3)

Finally, the economy is subject to a labor availability constraint

L1+L2+L35L

(A-6)

(A-7)

The first order optimality conditions for this economy which is subject
to an environmental externality are.derived by maximizing (A-1) subject to the

constraints (A-2), through (A-7) and

Ly, Lo, La, X,, X,, A20

Form the Lagrangean:

p=U (X1’ X, A) -2 [x1 - Fl(Ll-bALl)] -B[XZ-FZ(LZ)]

- N [aX2 - aF2(L2)] -u [A -aX_ + AC(L3):| -w (L1 + L+ L,- L)

2 2

Partially differentiating (A-9) with respect to Xl’ X2, A, Ll’ L

yields: 2

- 1

BXl

o= U, - B-ya+ua=0
X, °

2

8= U - dF -bL ~u=0
aa A tad !
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(A-8)

(A-9)

and L

3

(A-10)

(A-11)

(A-12)



_@ﬂ=7\_8_1“_1 (1-bA) - w=0

aL1 BLv'lr (A-13)
30 = (Btya) OF, - w=0
= 2 (A-14)
BLZ aL2

(A-15)

Note that the shadow prices of X , X and A are, respectively, A, B
and . Both A and | are positive by assuming nonsatiation in consumption
of both X and X . pis negative since oU/QA < 0. The interpretation
of equations (A-10) through (A-15) is straightforward. The optimality in the

presence of the pollution externality requires that U1/U2 =)\/[B+ a('y-u)];

= a d = - = - =
U /U, =M (u+ bl + *a_ilc ) and w = A(1-bA) 2—5—.1. u %%c (B+ va) F,.
1 1 3 oL,

In view of (A-11), and remembering a > 0 the optimal policy is to impose
a consumption tax of a(p,-l—y)per unit of X,. From (A-12), it is clear that

a subsidy of p + bLy +)\39F should be given to consumers who suffer from the
oL

air pollution. In view of (A-13), a production subsidy of AbA per unit of

X, is required for efficient production. Also in view of (A-14), a production
tax of ya per unit of X, should be imposed. In short, the optimal policies
in the presence of the environmental pollution involve a consumption and prod-
uction tax on X, a consumption subsidy on A and a production subsidy on X;.

ACCEPTABLE POLLUTION LEVEL

Suppose the pollution level is constrained by the authority not to exceed
the statutory acceptable level. This problem amounts to introducing an addi-
tional constraint in the model.

A< A% - < A%
<A or aFZ(LZ) Ac(LB) <A

In this case, the first order conditions (A-14) and (A-15) should alter
to
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oF
o . 372 _ i
a—L—z (B+ya+aa)aL2 -w=o0 (A-14")

X =(p-e)ds -w=o
QL3= BLS; (A-15")

where o is the shadow price associated with the acceptable pollution constraint.
The constraint will be binding because otherwise the objective can be attained
without statutory regulation. This means ¢ > 0. It is clear, in view of (A-14")
and (A-15') that the optimal interventions to constrain the pollution in the

air not to exceed the acceptable level are to apply an additional tax of @a

per unit of X, and a subsidy of ¢wper unit of A, to the pollution control
sector of the economy. Thus, a penalty on the pollution producing industry coupled
with a subsidy on the pollution abatement industry is the second best optimal

combination of policies to achieve the objective of reducing the pollution concen-
tration below the "threshold" level.
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(- N S I L

-
o

12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30

SMSA

Akron, Ohio

Albany-Schenectady-Troy, N.Y.
Allentown-Bethlehem~Easton, Pa.~N.J.
Anaheim-Santa Ana-Garden Grove, Calif.
Atlanta, Ga.

Baltimore, Md.

Birmingham, Ala.

Boston, Mass.

Buffalo, N.Y.

Chicago, Ill.

Cincinnati, Ohio-Ky.-Ind.
Cleveland, Ohio

Columbus, Ohio

Dallas, Texas

Dayton, Ohio

Denver, Colo.

Detroit, Mich.

Fort Lauderdale-Hollywood, Fla.
Fort Worth, Texas
Gary-Hammond-East Chicago, Ind.

Grand Rapids, Mich.

Greensboro-Winston-Salem-High Point,
N.C.

Hartford, Conn.

Honolulu, Hawaii

Houston, Texas

Indianapolis, Ind.

Jacksonville, Fla.

Jersey City, N.J.

Kansas City, Mo.-Kans.

Los Angeles-Long Beach, Calif.

APPENDIX B

LIST A

SMSA'S WITH POPULATION OVER 500,000 (L)

Code

ARR
ALB
ALL
ANA
ATL
BAL
BIR
BOS
BUF
CHY

CIN
CLE
COL.
DAL
DAY
DEN
DET
FOR
FOR
GAR

GRA
GRE

HAR
HON
HOU
IND
JAC
JER
KAN
LOS

Population, 1970

(in 1,000)

679 31
721 32
544 33
1,420 34
1,390 35
2,071 36
739 37
2,754 38
1,349 39
6,979 40
1,385 41
2,064 42
916 43
1,556 44
850 45
1,228 46
4,200 47
620 48
762 49
633 50
539 51
604 52
53
664 34
629 35
1,985 36
1,110 57
529 58
609 39
1,254 60

7,032
61
62
63
64

SMSA

Louisville, Ky.-Tnd.
Memphis, Tenn.-Ark.

Miami, Fla.

Milwaukee, Wis.
Minneapolis-St. Paul, Minn.
Nashville-Davidson, Tean.
New Orleans, La.

New York, N.Y.

Newark, N.J.
Norfolk-Portsmouth, Va.

Oklahoma City, Okla.

Omaha, Nebraska-Ilowa
Paterson~Clifton-Passaic, N.J.
Philadelphia, Pa.~N.J.

Phoenix, Ariz.

Pittsburgh, Pa.

Portland, Oreg.-Wash.
Providence-Pawtucket-Warwick, R.1.-Mass.
Richmond, Va.

Rochester, N.V.

Sacramento, Calif.

St. Louis, Mo.~Il1l.

Salt Lake city, Utah

San Antonio, Texas

San Bernadino~Riverside-Ontario, Calif.
San Diego, Calif.

San Francisco-Oakland, Calif.

San Jose, Calif.

Seattle-Everett, Wash.

Springfield-Chicopee-Holyoke, Mass.-Conn.

Syracuse, N.Y.

Tampa-St, Petersburg, Fla.
Toledo, Ohio-Mich.
Washington, D.C.-Md.-Va.
Youngstown-Warren, Ohio

Population, 1970
Code (in 1,000)
LOU 827
MEM 770
MIA 1,268
MIL 1,404
MIN 1,814
NAS 541
NEW 1,046
NEW 11,529
NEW 1,857
NOR 681
OKL 641
OMA 540
PAT 1,359
PHI 4,818
PHO 968
PIT 2,401
POR 1,009
PRO 911
RIC 518
ROC 883
SAC 801
STL 2,363
SAL 558
SAN 864
SAN 1,143
SAN 1,358
SAN 3,110
SAN 1,065
SEA 1,422
SPR 530
SYR 636
TAM 1,013
TOL 693
WAS 2,861
YOU 536



641

66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104
105

SMSA
Albuquerque, N. Mex.
Ann Arbor, Mich.
Appleton-Oshkosh, Wis.
Augusta, Ga.-§8.C.
Austin, Texas
Bakersfield, Calif.
Baton Rouge, La.
Beaumont-Port Authur-Orange, Texas
Binghamton, N.Y.-Pa.
Bridgeport, Conn.

Canton, Ohio
Charleston, S.C.
Charleston, W. Va.
Charlotte, N.C.
Chattanooga, Tenn.-Ga.
Colorado Springs, Colo.
Columbia, S.C.
Columbus, Ga.-Ala.
Corpus Christi, Texas

Davenport-Rock Island-Moline, Iowa-I11.

Des Moines, Towa
Duluth-Superior, Minn.-Wis.
El Paso, Tex.

Erie, Pa.

Eugene, Oreg.

Evansville, Ind.-Ky.
Fayetteville, N.C.

Flint, Mich.

Fort Wayne, Ind.

Fresno, Calif.

Greenville, S.C.
Hamilton-Middleton, Ohio
Harrisburg, Pa.

Huntington-Ashland, W. Va.-Ky.-Ohio
Huntsville, Ala.

Jackson, Miss.

Johnstown, Pa.

Kalamazoo, Mich.

Knoxville, Tenn.

Lancaster, Pa.

LIST B

SMSA'S WITH POPULATION 200,000-500,000 (M)

Code

ALB
ANN
APP
AUG
AUS
BAK
BAT
BEA
BIN
BRI

CAN
CHA
CHA
CHA
CHA
CcoL
COL
COL
COR
DAV

DES
puL
ELP
ERI
EUG
EVA
FAY
FLI
FOR
FRE

Population, 1970
(in 1,000)

316
234
277
253
296
329
285
316
303
389

372
304
230
409
305
236
323
239
285
363

286
265
359
264
213
233
212
497
280
413

300
226
411
254
228
259
263
202
400
320

106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131

133
134
135

136
137
138
139
140
141
142
143
144
145

146
147
148

SMSA

Lansing, Mich.
Las Vegas, Nev.
Lawrence-Haverhill, Mass.-N.H.

Little Rock-North Little Rock, Ark.

Lorain-Elyria, Ohio
Lowell, Mass.
Macon, Ga.

Madison, Wis.
Mobile, Ala.
Montgomery, Ala.

New Haven, Conn.

New London-Groton-Norwich, Conn.
Newport News-Hampton, Va.
Orlando, Fla.

Oxnard-Ventura, Calif.

Pensacola, Fla.

Peorta, Ill.
Raleigh, N.C.
Reading, Pa.
Rockford, I11.
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